Full Content is available to subscribers

Subscribe/Learn More  >

Implementing the ISO 15746 Standard for Chemical Process Optimization

[+] Author Affiliations
Guodong Shao, Peter Denno, Albert Jones, Yan Lu

National Institute of Standards and Technology, Gaithersburg, MD

Paper No. MSEC2016-8635, pp. V002T04A004; 10 pages
  • ASME 2016 11th International Manufacturing Science and Engineering Conference
  • Volume 2: Materials; Biomanufacturing; Properties, Applications and Systems; Sustainable Manufacturing
  • Blacksburg, Virginia, USA, June 27–July 1, 2016
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-4990-3


This paper proposes an approach to integrating advanced process control solutions with optimization (APC-O) solutions, within any factory, to enable more efficient production processes. Currently, vendors who provide the software applications that implement control solutions are isolated and relatively independent. Each such solution is designed to implement a specific task such as control, simulation, and optimization — and only that task. It is not uncommon for vendors to use different mathematical formalisms and modeling tools that produce different data representations and formats. Moreover, instead of being modeled uniformly only once, the same knowledge is often modeled multiple times — each time using a different, specialized abstraction. As a result, it is extremely difficult to integrate optimization with advanced process control.

We believe that a recent standard, International Organization for Standardization (ISO) 15746, describes a data model that can facilitate that integration. In this paper, we demonstrate a novel method of integrating advanced process control using ISO 15746 with numerical optimization. The demonstration is based on a chemical-process-optimization problem, which resides at level 2 of the International Society of Automation (ISA) 95 architecture. The inputs to that optimization problem, which are captured in the ISO 15746 data model, come in two forms: goals from level 3 and feedback from level 1. We map these inputs, using this data model, to a population of a meta-model of the optimization problem for a chemical process. Serialization of the metamodel population provides input to a numerical optimization code of the optimization problem. The results of this integrated process, which is automated, provide the solution to the originally selected, level 2 optimization problem.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In