Full Content is available to subscribers

Subscribe/Learn More  >

Automated Learning of Operation Parameters for Robotic Cleaning by Mechanical Scrubbing

[+] Author Affiliations
Ariyan M. Kabir, Joshua D. Langsfeld, Cunbo Zhuang, Krishnanand N. Kaipa

University of Maryland, College Park, MD

Satyandra K. Gupta

University of Southern California, Los Angeles, CA

Paper No. MSEC2016-8660, pp. V002T04A001; 12 pages
  • ASME 2016 11th International Manufacturing Science and Engineering Conference
  • Volume 2: Materials; Biomanufacturing; Properties, Applications and Systems; Sustainable Manufacturing
  • Blacksburg, Virginia, USA, June 27–July 1, 2016
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-4990-3
  • Copyright © 2016 by ASME


The task of cleaning surfaces where foreign particles are removed by mechanical scrubbing requires oscillatory motions of the cleaning tool. Selecting the optimal operation parameters is important to automate this task with robots. The operation parameters can be the tool speed, force applied to the surface, frequency and amplitude of tool oscillation, stiffness offered by the robot, etc. The optimal set of parameters will be different for different surface/stain profiles and physical limitations of the robot. A large number of cleaning experiments need to be done if we try to find the optimal parameters exhaustively in a high dimensional space. It will also take a significant number of experiments to find the right model for the cleaning function and predict the optimal cleaning parameters under supervised learning settings. Conducting large number of experiments is often not feasible. We describe a semi-supervised learning approach to reduce the number of cleaning experiments to automate the process of finding the optimal cleaning parameters for arbitrary surface/stain profiles. This generalized method is also applicable for the tasks of grinding and polishing. Results from experiments with two Kuka robots performing cleaning tasks show the validity of our approach.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In