0

Full Content is available to subscribers

Subscribe/Learn More  >

Platform-Dependent Liquid Handling in High-Throughput Biodosimetry Tool

[+] Author Affiliations
Dakai Bian, Jason C. Tsui, Y. Lawrence Yao

Columbia University, New York, NY

Mikhail Repin, Guy Garty, Helen Turner, David J. Brenner

Columbia University Medical Center, New York, NY

Paper No. MSEC2016-8513, pp. V002T03A007; 10 pages
doi:10.1115/MSEC2016-8513
From:
  • ASME 2016 11th International Manufacturing Science and Engineering Conference
  • Volume 2: Materials; Biomanufacturing; Properties, Applications and Systems; Sustainable Manufacturing
  • Blacksburg, Virginia, USA, June 27–July 1, 2016
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-4990-3
  • Copyright © 2016 by ASME

abstract

Due to the need of high speed and efficient biodosimetric assays for triage and therapy in the event of radiological or nuclear attack, a robotically-based automated biodosimetry tool (RABiT) has been developed over the past few years. Adapting the micronucleus assay from filter plates to V-shaped plates presented challenges in the liquid handling, namely cell splashing out of the V-shaped well plate during the cell harvesting, poor cell distribution on the bottom of the image plate during the dispensing, and cell loss from the image plate during the aspiration in the liquid handling process. Experimental and numerical investigations were carried out to better understand the phenomena and mitigate the problems. Surface tension and contact angle among the fluids and the plate wall were accounted for in the discrete and multiphase numerical models. Experimental conditions were optimized based on the numerical results showing the relationship between nozzle speed and amount of splashed liquid, and the relationship between aspiration speed and number of escaped cells. Using these optimized parameters, numbers of micronuclei in binucleated cells showed the same dose dependence in the RABiT-prepared samples as those in the manually prepared ones. Micronucleus assay protocol was fully realized on RABiT.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In