Full Content is available to subscribers

Subscribe/Learn More  >

Fabricating Microchannels in Elastomer Substrates for Stretchable Electronics

[+] Author Affiliations
Michelle C. Yuen, Rebecca K. Kramer

Purdue University, West Lafayette, IN

Paper No. MSEC2016-8654, pp. V002T01A014; 9 pages
  • ASME 2016 11th International Manufacturing Science and Engineering Conference
  • Volume 2: Materials; Biomanufacturing; Properties, Applications and Systems; Sustainable Manufacturing
  • Blacksburg, Virginia, USA, June 27–July 1, 2016
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-4990-3
  • Copyright © 2016 by ASME


As flexible devices and machines become more ubiquitous, there is a growing need for similarly deformable electronics. Soft polymers continue to be widely used as stretchable and flexible substrates for soft electronics, and in particular, soft sensing. These soft sensors generally consist of a highly elastic substrate with embedded microchannels filled with a conductive fluid. Deforming the substrate deforms the embedded microchannels and induces a change in the electrical resistance through the conductive fluid. Microchannels, thus, are the foundation of flexible electronic devices and sensors. These microchannels have been fabricated using various methods, where the manufacturing method greatly impacts device functionality. In this paper, comparisons are made between the following methods of microchannel manufacturing: cast molding, 3D printing of the elastomer substrate itself, and laser ablation. Further processing of the microchannels into flexible electronics is also presented for all three methods. Lastly, recommended ranges of microchannel sizes and their associated reproducibility and accuracy measures for each manufacturing method are presented.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In