Full Content is available to subscribers

Subscribe/Learn More  >

Modeling Evolution of Microstructures Beneath Topographically Textured Surfaces Produced Using Shear Based Material Removal

[+] Author Affiliations
Saurabh Basu, Zhiyu Wang, Christopher Saldana

Georgia Institute of Technology, Atlanta, GA

Paper No. MSEC2016-8802, pp. V002T01A011; 5 pages
  • ASME 2016 11th International Manufacturing Science and Engineering Conference
  • Volume 2: Materials; Biomanufacturing; Properties, Applications and Systems; Sustainable Manufacturing
  • Blacksburg, Virginia, USA, June 27–July 1, 2016
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-4990-3
  • Copyright © 2016 by ASME


Tool chatter is envisaged as a technique to create undulations on fabricated biomedical components. Herein, a-priori designed topographies were fabricated using modulate assisted machining of oxygen free high conductivity copper. Subsequently, underpinnings of microstructure evolution in this machining process were characterized using electron back scattered diffraction based orientation imaging microscopy. These underpinnings were related to the unsteady mechanical states present during modulated assisted machining, this numerically modeled using data obtained from simpler machining configurations. In this manner, relationships between final microstructural states and the underlying mechanics were found. Finally, these results were discussed in the context of unsteady mechanics present during tool chatter, it was shown that statistically predictable microstructural outcomes result during tool chatter.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In