Full Content is available to subscribers

Subscribe/Learn More  >

Scalable Plasmonic Nanolithography: Prototype System Design and Construction

[+] Author Affiliations
Yuan Wang, David B. Bogy, Xiang Zhang

University of California, Berkeley, Berkeley, CA

Mohamed E. Saad, Kang Ni

The University of North Carolina at Charlotte, Charlotte, NC

Yen Chi Chang, Cheng-Wei Chen, Tsu Chin Tsao, Adrienne S. Lavine

University of California, Los Angeles, CA

Chen Chen, Liang Pan

Purdue University, West Lafayette, IN

Paper No. MSEC2016-8671, pp. V001T02A081; 8 pages
  • ASME 2016 11th International Manufacturing Science and Engineering Conference
  • Volume 1: Processing
  • Blacksburg, Virginia, USA, June 27–July 1, 2016
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-4989-7
  • Copyright © 2016 by ASME


Maskless nanolithography is an agile and cost effective approach if their throughputs can be scaled for mass production purposes. Using plasmonic nanolithography (PNL) approach, direct pattern writing was successfully demonstrated with around 20 nm half-pitch at high speed. Here, we report our recent efforts of implementing a high-throughput PNL prototype system with unique metrology and control features, which are designed to use an array of plasmonic lenses to pattern sub-100 nm features on a rotating substrate. Taking the advantage of air bearing surface techniques, the system can expose the wafer pixel by pixel with a speed of ∼10 m/s, much faster than any conventional scanning based lithography system. It is a low-cost, high-throughput maskless approach for the next generation lithography and also for the emerging nanotechnology applications, such as nanoscale metrology and imaging.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In