0

Full Content is available to subscribers

Subscribe/Learn More  >

Effect of Applied Electricity on Springback During Bending and Flattening of 304/316 Stainless Steel, Titanium AMS-T-9046 and Magnesium AZ31B

[+] Author Affiliations
Jacklyn Niebauer, Tyler Grimm, Derek Shaffer, Ian Sweeney, Ihab Ragai, John T. Roth

Penn State Erie – The Behrend College, Erie, PA

Paper No. MSEC2016-8810, pp. V001T02A021; 9 pages
doi:10.1115/MSEC2016-8810
From:
  • ASME 2016 11th International Manufacturing Science and Engineering Conference
  • Volume 1: Processing
  • Blacksburg, Virginia, USA, June 27–July 1, 2016
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-4989-7
  • Copyright © 2016 by ASME

abstract

One of the major issues with forming sheet metal is the tendency for parts to spring back towards their original shape when the applied loading is released. Springback is a form of geometric inaccuracy and is the result of residual stresses, which are created as the part deforms. As a result, forming intricate parts require specialized equipment and calculations to compensate for springback. Transportation industries that rely on forming high strength parts currently use complicated machinery that takes up time and energy to meet specifications. This research investigates the effects of electrically assisted manufacturing (EAM), a process in which electrical current is applied while a material is being manufactured, on springback. Bending and flattening testing will be performed on 4 metals: stainless steel 304 and 316, ASM-T-9046 titanium, and AZ31B magnesium. Additional testing will be performed on stainless steel, observing the effect of changing thicknesses, pulse durations, and current densities on springback. It was observed that an increase in pulse durations results in decreased springback for all the materials. Applying electricity to decrease springback was more effective for bending than flattening procedures in stainless steel and titanium, though it was equally effective for magnesium. For the additional testing on stainless steel, a change in thickness affected results when comparing it to current density, but not when observing similar applied current.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In