0

Full Content is available to subscribers

Subscribe/Learn More  >

Effects of Airfoil’s Polar Data in the Stall Region on the Estimation of Darrieus Wind Turbine Performance

[+] Author Affiliations
David Marten, Georgios Pechlivanoglou, Christian Navid Nayeri, Christian Oliver Paschereit

Technische Universität Berlin, Berlin, Germany

Alessandro Bianchini, Francesco Balduzzi, Giovanni Ferrara

University of Firenze, Firenze, Italy

Lorenzo Ferrari

National Research Council of Italy, Sesto Fiorentino, Italy

Paper No. GT2016-56685, pp. V009T46A007; 11 pages
doi:10.1115/GT2016-56685
From:
  • ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
  • Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy
  • Seoul, South Korea, June 13–17, 2016
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4987-3
  • Copyright © 2016 by ASME

abstract

Interest in vertical-axis wind turbines (VAWTs) is experiencing a renaissance after most major research projects came to a standstill in the mid 90’s, in favour of conventional horizontal-axis turbines (HAWTs). Nowadays, the inherent advantages of the VAWT concept, especially in the Darrieus configuration, may outweigh their disadvantages in specific applications, like the urban context or floating platforms.

To enable these concepts further, efficient, accurate, and robust aerodynamic prediction tools and design guidelines are needed for VAWTs, for which low-order simulation methods have not reached yet a maturity comparable to that of the Blade Element Momentum Theory for HAWTs’ applications. The two computationally efficient methods that are presently capable of capturing the unsteady aerodynamics of Darrieus turbines are the Double Multiple Streamtubes (DMS) Theory, based on momentum balances, and the Lifting Line Theory (LLT) coupled to a free vortex wake model. Both methods make use of tabulated lift and drag coefficients to compute the blade forces.

Since the incidence angles range experienced by a VAWT blade is much wider than that of a HAWT blade, the accuracy of polars in describing the stall region and the transition towards the “thin plate like” behaviour has a large effect on simulation results. This paper will demonstrate the importance of stall and post-stall data handling in the performance estimation of Darrieus VAWTs. Using validated CFD simulations as a baseline, comparisons are provided for a blade in VAWT-like motion based on a DMS and a LLT code employing three sets of post-stall data obtained from a wind tunnel campaign, XFoil predictions extrapolated with the Viterna-Corrigan model and a combination of them. The polar extrapolation influence on quasi-steady operating conditions is shown and azimuthal variations of thrust and torque are compared for exemplary tip-speed ratios (TSRs). In addition, the major relevance of a proper dynamic stall model into both simulation methods is highlighted and discussed.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In