0

Full Content is available to subscribers

Subscribe/Learn More  >

On the Interaction of Multiple Traveling Wave Modes in the Flutter Vibrations of Friction-Damped Tuned Bladed Disks

[+] Author Affiliations
Malte Krack

University of Stuttgart, Stuttgart, Germany

Lars Panning-von Scheidt, Jörg Wallaschek

Leibniz Universität Hannover, Hannover, Germany

Paper No. GT2016-56126, pp. V07BT34A003; 11 pages
doi:10.1115/GT2016-56126
From:
  • ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
  • Volume 7B: Structures and Dynamics
  • Seoul, South Korea, June 13–17, 2016
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4984-2
  • Copyright © 2016 by ASME

abstract

The aerodynamic interference between the blades of a bladed disk can lead to self-excited vibrations known as flutter. Flutter vibrations can reach considerable levels and are thus of special concern in the design of turbomachines. The vibrations can be saturated in so-called limit cycles by the nonlinear dissipative effects related to dry friction in mechanical joints. For a given mode family of a tuned bladed disk, the flutter stability depends on the interblade phase angle, and often multiple traveling wave forms are unstable. In spite of this, previous investigations indicated that in the steady state, friction-damped flutter vibrations of tuned bladed disks are dominated by a single traveling wave component. In contrast, we demonstrate that, in fact, multiple traveling wave components may interact in the steady state. To this end, a phenomenological model is studied, which possesses one lumped mass per sector, elastic Coulomb friction inter-sector coupling, and two unstable traveling waves forms. Depending on the location of the complex eigenvalues of the linearized system, the steady-state vibrations are shown to be dominated by either of the two unstable wave forms or exhibit considerable contributions of both. Both periodic and quasi-periodic attractor forms are computed using Fourier methods and validated with direct time integration. Moreover, the basins of attraction of the different stable limit states are analyzed in detail. Remarkably, even if a stable, periodic vibration in a certain traveling wave is attained, a sufficiently strong instantaneous perturbation of the same form can give rise to a transient ending in a limit cycle with a different traveling wave character.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In