0

Full Content is available to subscribers

Subscribe/Learn More  >

Design of Hybrid Hydrostatic/Hydrodynamic Journal Bearings for Optimum Self-Compensation Under Misaligning External Loads

[+] Author Affiliations
L. F. Martinez Esparza

Embry-Riddle Aeronautical University, Daytona Beach, FL

J. G. Cervantes de Gortari, E. J. Chicurel Uziel

National University of Mexico, México City, México

Paper No. GT2016-58125, pp. V07BT31A037; 12 pages
doi:10.1115/GT2016-58125
From:
  • ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
  • Volume 7B: Structures and Dynamics
  • Seoul, South Korea, June 13–17, 2016
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4984-2
  • Copyright © 2016 by ASME

abstract

A method to design hybrid hydrostatic/hydrodynamic journal bearings, with the criterion of optimized self-compensation under misaligning loads, is presented. An analysis considering laminar and turbulent flow of a Newtonian incompressible lubricant between the bearing and a misaligned shaft, with restricted lubricant supply to each recess, is discussed. The mathematical model considers the modified steady state Reynolds lubrication equation, an exact function for the local bearing radial clearance with a misaligned shaft, the continuity integral-differential equations at the recess limits and boundary conditions at the cavitation zone and outer limits. The finite-difference method was used, and a modular computer program was developed. The procedure follows a univariate search to determine the optimum size and position of recesses and therefore obtain the design with the maximum reactive moment under misaligning loads. A validation of the model was obtained comparing the results with experimental and calculated data from literature. Results for a 4+4 LBP hybrid bearing design are presented.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In