0

Full Content is available to subscribers

Subscribe/Learn More  >

Response of a Squeeze Film Damper-Elastic Structure System to Multiple and Consecutive Impact Loads

[+] Author Affiliations
Luis San Andrés, Sung-Hwa Jeung

Texas A&M University, College Station, TX

Paper No. GT2016-56695, pp. V07BT31A019; 12 pages
doi:10.1115/GT2016-56695
From:
  • ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
  • Volume 7B: Structures and Dynamics
  • Seoul, South Korea, June 13–17, 2016
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4984-2
  • Copyright © 2016 by ASME

abstract

Squeeze Film Dampers (SFDs) are common in aircraft gas turbine engines, customized to provide a desired level of damping while also ensuring structural isolation. This paper presents measurements obtained in a test rig composed of a massive cartridge, an elastic structure, and an open ends SFD with length L=25.4 mm, diameter D=127 mm, and radial clearance c=0.267 mm. ISO VG 2 oil at room temperature lubricates the thin film. The measurements quantify the system transient response to sudden loads for motions departing from various static eccentricity displacements, es/c=0 to 0.6. The batch of tests include recording the system response to (a) one single impact, (b) two (and three) impacts with an elapsed time of 30 ms in between, and (c) two or more consecutive impacts, without any delay, each with a load magnitude at 50% of the preceding impact. The load actions intend to reproduce, for example, a hard landing on an uneven surface or plunging motions from sudden contacts in a machine tool. The test system transient responses due to one or more impacts, each 30 ms apart, show the peak amplitude of motion (ZMAX) is proportional to the magnitude of applied load (FMAX). The identified system damping ratio (ξ) is proportional to the peak dynamic displacement as a linear system would show. Predictions of transient response from a physical SFD model accounting for fluid inertia correlate best with the experimental results as they produce greatly reduced peak dynamic motions when compared to predictions from a purely viscous SFD model. For the responses due to consecutive impacts, one after the other with no delay, the system motion does not decay immediately but builds to produce larger motion amplitudes than in the earlier cases. Eventually, as expected, after several oscillations the system comes to rest. For an identical damper having a smaller clearance cs=0.213 mm (0.8c), its damping ratio (ξs) is ∼1.3 to ∼1.7 times greater than the damping ratio for the damper with a larger film clearance (ξ). Hence, the experimentally derived (ξs/ξ) scales with (c/cs)2. The finding demonstrates the importance of manufacturing precisely the components in a damper to produce an accurate clearance.

Copyright © 2016 by ASME
Topics: Stress , Dampers

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In