0

Full Content is available to subscribers

Subscribe/Learn More  >

Combustor-Turbine Aerothermal Interaction in an Axial Turbine: Influence of Varied Inflow Conditions on Endwall Heat Transfer and Film Cooling Effectiveness

[+] Author Affiliations
Holger Werschnik, Jonathan Hilgert, Martin Bruschewski, Heinz-Peter Schiffer

Technische Universität Darmstadt, Darmstadt, Germany

Paper No. GT2016-57171, pp. V05CT19A022; 15 pages
doi:10.1115/GT2016-57171
From:
  • ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
  • Volume 5C: Heat Transfer
  • Seoul, South Korea, June 13–17, 2016
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4980-4
  • Copyright © 2016 by ASME

abstract

The Large Scale Turbine Rig (LSTR) at Technische Universit ät Darmstadt, Germany is used to examine the aerothermal interaction of combustor exit flow conditions on the subsequent turbine stage. The rig resembles a high pressure turbine and is scaled to low Mach number conditions. A baseline configuration with axial, low-turbulent inflow and an aerodynamic inflow condition of a state-of-the-art lean combustor is modeled by the means of swirl generators, whose clocking position towards the nozzle guide vane’s leading edge can be varied. A hub side coolant injection consisting of a double-row of cylindrical holes is implemented to examine the impact on endwall cooling.

This paper is directed to study the effect of swirling inflow on heat transfer and film cooling effectiveness on the hub side endwall. Nusselt numbers are calculated using infrared thermography and the auxiliary wall method. This method allows for a high spatial resolution and in addition also yields adiabatic wall temperature data within the same measurement using a superposition approach. Aerodynamic measurements and numerical simulations complement the examination.

The results for the baseline case show Nusselt numbers to increase significantly with higher coolant mass flux rates for the whole endwall area. With swirling inflow, in general, a decrease of film cooling effectiveness and an increase of Nusselt numbers is observed for identical mass flux rates in comparison to the baseline case. The difference varies depending on clocking position.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In