Full Content is available to subscribers

Subscribe/Learn More  >

Dependence of Film Cooling Effectiveness on 3D Printed Cooling Holes

[+] Author Affiliations
Paul Aghasi, Ephraim Gutmark, David Munday

University of Cincinnati, Cincinnati, OH

Paper No. GT2016-56698, pp. V05CT19A014; 15 pages
  • ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
  • Volume 5C: Heat Transfer
  • Seoul, South Korea, June 13–17, 2016
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4980-4
  • Copyright © 2016 by ASME


Film Cooling Effectiveness is closely dependent on the geometry of the hole emitting the cooling film. These holes are sometimes quite expensive to machine by traditional methods so 3D printed test pieces have the potential to greatly reduce the cost of film cooling experiments. What is unknown is the degree to which parameters like layer resolution and the choice among 3D printing technologies influence the results of a film cooling test. A new flat-plate film cooling facility employing oxygen sensitive paint (OSP) verified by gas sampling and the mass transfer analogy and measurements both by gas sampling and OSP is verified by comparing measurements by both gas sampling and OSP. The same facility is then used to characterize the film cooling effectiveness of a diffuser shaped film cooling hole geometry. These diffuser holes are then produced by a variety of additive manufacturing technologies with different build layer thicknesses. Technologies used include Fused Deposition Modeling (FDM), Stereo Lithography Apparatus (SLA) and PolyJet with build layer thicknesses ranging from 0.001D (25 μm) to 0.12D (300 μm). These are compared with an aluminum coupon manufactured by traditional machining methods. The objective is to determine if cheaper manufacturing techniques afford usable and reliable results. Tests are carried out at mainstream flow Mach number of 0.30 and blowing ratios (BRs) from 1.0 to 3.5. The coolant gas used is CO2 yielding a density ratio of 1.5. Surface quality is characterized by an Optical Microscope that measures surface roughness. Test coupons with rougher surface topology generally showed delayed blow off and higher film cooling effectiveness at high blowing ratios compared to the geometries with lower measured surface roughness. At the present scale, none of the additively manufactured parts consistently matched the traditionally machined part, indicating that caution should be exercised in employing additively manufactured test pieces in film cooling work.

Copyright © 2016 by ASME
Topics: Cooling , Film cooling



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In