0

Full Content is available to subscribers

Subscribe/Learn More  >

Application of S-PIV for Investigation of Round and Shaped Film Cooling Holes at High Density Ratios

[+] Author Affiliations
Travis B. Watson, Sara Nahang-Toudeshki, Lesley M. Wright

Baylor University, Waco, TX

Daniel C. Crites, Mark C. Morris, Ardeshir Riahi

Honeywell Aerospace, Phoenix, AZ

Paper No. GT2016-56209, pp. V05CT19A008; 12 pages
doi:10.1115/GT2016-56209
From:
  • ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
  • Volume 5C: Heat Transfer
  • Seoul, South Korea, June 13–17, 2016
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4980-4
  • Copyright © 2016 by ASME

abstract

Hot section turbine engine components are often cooled through the use of a cool film of air on the component wall. The source of the air used for film cooling comes from the compressor of the gas turbine engine and may be 800°C, or more, cooler than the hot gas path air. The temperature differential between the hot mainstream gas and the film coolant results in a large difference in density between the two gases. In order to investigate the effect of high density ratios on film cooling performance, a traditional, round hole (θ = 30°) and a laidback, fan shaped hole (θ = 30°, α = γ = 10°) were observed using Stereo-Particle Image Velocimetry (S-PIV). Flowfield measurements were performed on various planes downstream of the film cooling hole (x/d = 0, 1, 3 and 10 for the round hole and x/d = 0, 3, and 10 for the shaped hole). At each location the coolant-to-mainstream interaction was captured at multiple density ratios (DR = 1, 2, 3, 4) and blowing ratios (M = 0.5, 1.0, 1.5). Using S-PIV, the three-dimensional flow field was measured. Distributions of the flow vorticity were derived from the high speed velocity measurements taken during S-PIV testing. For the simple angle, round holes, the results show at the elevated density ratios, the coolant spreads laterally near the hole; while at DR = 1, the coolant trace is limited to the width of the film cooling hole. Furthermore, as the cooling jet exits from the round hole, the vorticity within the jet is very strong, leading to increased mixing with the mainstream. However, as the density ratio increases (at a given blowing ratio), this mixing was reduced. For a given flow condition, the rotation was reduced with the jet exiting the shaped hole (compared to the round hole), and this led to enhanced protection on the surface. While investigating both round and shaped holes, it was shown the S-PIV method is a valuable tool to observe and quantify the jet–to–mainstream interactions near the film cooled surface.

Copyright © 2016 by ASME
Topics: Density , Film cooling

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In