0

Full Content is available to subscribers

Subscribe/Learn More  >

Film Cooling Investigation of a Slot-Based Diffusion Hole

[+] Author Affiliations
Bai-Tao An, Jian-Jun Liu, Si-Jing Zhou, Xiao-Dong Zhang

Chinese Academy of Sciences, Beijing, China

Chao Zhang

Tianjin University of Technology, Tianjin, China

Paper No. GT2016-56175, pp. V05CT19A005; 12 pages
doi:10.1115/GT2016-56175
From:
  • ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
  • Volume 5C: Heat Transfer
  • Seoul, South Korea, June 13–17, 2016
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4980-4
  • Copyright © 2016 by ASME

abstract

This paper presents a new configuration of discrete film hole, i.e., the slot-based diffusion hole. Retaining the similar diffusion features to a traditional diffusion hole, the slot-based diffusion hole transforms the cross section of circle for the traditional diffusion hole to a flattened rectangle with respect to the equivalent cross-sectional area. Consequently, the exit width of the new hole is effectively enlarged. To verify the film cooling effectiveness, a low speed flat plate experimental facility incorporated with Pressure Sensitive Paint (PSP) measurement technique was employed to obtain the adiabatic film cooling effectiveness. The experiments were performed with hole pitch to diameter ratio p/D=6 and density ratio DR=1.38. The blowing ratio was varied from M=0.5 to M=2.5. A fan-shaped hole and two slot-based diffusion holes were tested and compared. Three-dimensional numerical simulation was employed to analyze the flow field in detail. The experimental results showed that the area averaged effectiveness of two slot-based diffusion holes is significantly higher than that of the fan-shaped hole when the blowing ratio exceeds 1.0. The slot-based diffusion hole demonstrates the great advantage over the fan-shaped hole at hole exit and maintains this to far downstream. The numerical results showed that the ends shape of the flattened rectangular cross section has large influences on film distribution patterns and downstream vortex structures. The semi-circle and straight line ends shapes lead to a bi-peak and a single-peak effectiveness pattern, respectively. The optimal ends shape can regulate the vortex structures and improve the film cooling effectiveness further.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In