Full Content is available to subscribers

Subscribe/Learn More  >

Structural Deflection’s Impact in Turbine Stator Well Heat Transfer

[+] Author Affiliations
Julien Pohl, Harvey Thompson

University of Leeds, Leeds, UK

Antonio Guijarro Valencia, Gregorio López Juste

Universidad Politécnica de Madrid, Madrid, Spain

Vincenzo Fico, Gary A. Clayton

Rolls-Royce plc., Derby, UK

Paper No. GT2016-56428, pp. V05CT18A004; 10 pages
  • ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
  • Volume 5C: Heat Transfer
  • Seoul, South Korea, June 13–17, 2016
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4980-4
  • Copyright © 2016 by Rolls-Royce plc


In the most evolved designs, it is common practice to expose engine components to main annulus air temperatures exceeding the thermal material limit in order to increase the overall performance and to minimise the engine specific fuel consumption (SFC). To prevent overheating of the materials and thus the reduction of the component life, an internal flow system is required to cool the critical engine parts and to protect them. This paper shows a practical application and extension of the methodology developed during the five year research programme MAGPI. Extensive use was made of FEA (solids) and CFD (fluid) modelling techniques to understand the thermo-mechanical behaviour of a dedicated turbine stator well cavity rig, due to the interaction of cooling air supply with the main annulus. Previous work based on the same rig showed difficulties in matching predictions to thermocouple measurements near the rim seal gap. In this investigation, two different types of turbine stator well geometries were analysed, where further use was made of existing measurements of hot running seal clearances in the rig. The structural deflections were applied to the existing models to evaluate the impact in flow interactions and heat transfer. Additionally to the already evaluated test cases without net ingestion, cases simulating engine deterioration with net ingestion were validated against the available test data, also taking into account cold and hot running seal clearances. 3D CFD simulations were conducted using the commercial solver FLUENT coupled to the in-house FEA tool SC03 to validate against available test data of the dedicated rig.

Copyright © 2016 by Rolls-Royce plc



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In