Full Content is available to subscribers

Subscribe/Learn More  >

An Innovative Approach to Model Temperature Influence on Particle Deposition in Gas Turbines

[+] Author Affiliations
Giuliano Agati, Domenico Borello, Franco Rispoli, Paolo Venturini

Sapienza Università di Roma, Rome, Italy

Paper No. GT2016-57997, pp. V05CT12A012; 10 pages
  • ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
  • Volume 5C: Heat Transfer
  • Seoul, South Korea, June 13–17, 2016
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4980-4
  • Copyright © 2016 by ASME


The mechanism of deposit formation on the blade surfaces of a cooled turbine vane is investigated numerically. The prediction of dispersed particles trajectories is affected by temperature, by the mechanics of impact on a solid surface, and by the interaction between particles and film cooling jets and all these aspects must be accounted for. The model here proposed is obtained as a high temperature extension of the well-known Thornton and Ning (1998) approach in a temperature interval ranging between 500 K (where basic model — based on an elastic-plastic impact mechanism assumption — holds) and 1500 K (where the critical viscosity model of Walsh et al., 1990 is usually employed). The transition between the two extreme conditions is modelled through a temperature-driven modification of the mechanical properties of both particles and target surfaces.

Our computations demonstrate that the updated model is able to return credible predictions of deposit formation when compared with the baseline models of Thornton and Ning and of Walsh and co-authors. Moreover in the region where particles bounce off, the model predict the coefficient of restitution according to the actual mechanical properties of particles, thus providing a better particle dynamics description than in both the critical viscosity and original Thornton and Ning models.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In