Full Content is available to subscribers

Subscribe/Learn More  >

Film Cooling Performance Improvement With Optimized Hole Arrangements on Pressure Side Surface of Nozzle Guide Vane: Part II — Experimental Validation

[+] Author Affiliations
Dong-Ho Rhee, Young Seok Kang, Bong Jun Cha

Korea Aerospace Research Institute, Daejeon, Korea

Jeong-Seek Kang

University of Notre Dame, Notre Dame, IN

Sanga Lee, Kwanjung Yee

Seoul National University, Seoul, Korea

Paper No. GT2016-57978, pp. V05CT12A011; 13 pages
  • ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
  • Volume 5C: Heat Transfer
  • Seoul, South Korea, June 13–17, 2016
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4980-4
  • Copyright © 2016 by ASME


In the present study, the optimized configurations of film cooled turbine guide vanes proposed in Part I were validated experimentally and the effect of coolant mass flow rate on the performance was examined for those optimized configurations. A set of tests were conducted using an annular sector transonic turbine cascade test facility in Korea Aerospace Research Institute. The mainstream and the secondary air for cooling are supplied by 500 hp and 50 hp compressors, respectively, and the mainstream was heated approximately 20°C above the secondary flow by 300kW heater. To measure the film cooling effectiveness on the pressure side surface, the transient measurement method was used using a FLIR infrared camera system. The test section has five nozzle guide vanes with four passages. The three times scaled-up vane model is manufactured by a stereolithography method. The tests were conducted at mainstream exit Reynolds number based on the chord of 2.2×106 and the coolant mass flow rate ranging from 5 to 13% of the mainstream. The flow periodicity in the cascade passage was verified by surface static pressure measurements. The results showed that the optimized cases present better cooling effectiveness values in the overall region. The effect of coolant mass flow rate also presents the same trend. Comparison with the CFD results shows that the CFD results over-predict film cooling effectiveness by 10∼20 percentage points for baseline and 17∼23 percentage points for the optimized cases. This is probably partly due to the discrepancy of operating conditions such as inlet boundary condition and density ratio and partly due to the limitation of numerical method used in the optimization such as coarse grid near the surface. However, a quite good agreement is obtained qualitatively, which means the optimization process can be utilized as a reliable and efficient method for film cooling performance improvement.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In