0

Full Content is available to subscribers

Subscribe/Learn More  >

Gas Turbine Combustor Rig Development and Initial Observations at Cold and Reacting Flow Conditions

[+] Author Affiliations
David Gomez-Ramirez, Sandeep Kedukodi, Siddhartha Gadiraju, Srinath V. Ekkad

Virginia Tech, Blacksburg, VA

Hee-Koo Moon, Yong Kim, Ram Srinivasan

Solar Turbines Inc., San Diego, CA

Paper No. GT2016-57825, pp. V05BT17A016; 12 pages
doi:10.1115/GT2016-57825
From:
  • ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
  • Volume 5B: Heat Transfer
  • Seoul, South Korea, June 13–17, 2016
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4979-8
  • Copyright © 2016 by ASME

abstract

The present paper describes the first phase of the design and development of a realistic, high-pressure, full-scale research gas turbine combustor at Virginia Tech. The final test rig will be capable of operating at inlet temperatures of 650 K, pressures up to 9.28 Bar (120 psig), maximum air inlet flow rates of 1.27 kg/s (2.8 lbm/s), and allow for variations in the geometry of the combustor model. The first phase consists of a low-pressure (atmospheric) optical combustor for heat transfer and flow-field measurements at isothermal and reacting conditions. The combustor model is equipped with an industrial low emission fuel injector from Solar Turbines Incorporated, used in their land based gas turbine Taurus-60. The primary objective of the developed rig is to provide additional insight into the heat transfer processes that occur within gas turbine combustors, primarily the convective component, which has not been characterized. A future phase of the test rig development will incorporate a pressure vessel that will allow for the operation of the combustor simulator at higher pressures. In the present publication, the design methodology and considerations, as well as the challenges encountered during the design of the first phase of the simulator are briefly discussed. An overview is given on the design of the instrumentation and process piping surrounding the test rig, including ASME codes followed as well as the instrumentation and equipment selected. A detailed description of the test section design is given, highlighting the design for high temperature operation.

As an example of the capabilities of the rig, representative measurements are presented. Characterization of the isothermal flow field using planar Particle Image Velocimetry (PIV) at a Reynolds number of 50 000 was performed and compared with flame imaging data at the same inlet conditions operating at an equivalence ratio of 0.7. The data suggests that the flame location follows the maximum turbulent kinetic energy as measured in the isothermal field. Representative data from the computational efforts are also presented and compared with the experimental measurements. Future work will expand on both reacting and isothermal PIV and heat transfer measurements, as well as computational validations.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In