0

Full Content is available to subscribers

Subscribe/Learn More  >

Effusion Cooled Combustor Liner Tiles With Modern Cooling Concepts: A Comparative Experimental Study

[+] Author Affiliations
Thomas Jackowski, Achmed Schulz, Hans-Jörg Bauer

Karlsruher Institut für Technologie, Karlsruhe, Germany

Miklós Gerendás

Rolls-Royce Deutschland Ltd & Co KG, Blankenfelde-Mahlow, Germany

Thomas Behrendt

German Aerospace Center, Köln, Germany

Paper No. GT2016-56598, pp. V05BT17A007; 13 pages
doi:10.1115/GT2016-56598
From:
  • ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
  • Volume 5B: Heat Transfer
  • Seoul, South Korea, June 13–17, 2016
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4979-8
  • Copyright © 2016 by ASME and Rolls-Royce Deutschland Ltd & Co KG

abstract

Advanced combustion techniques in aero engines require highly effective cooling schemes of combustor liners. One parameter affecting the cooling performance is the geometry of the cooling holes themselves. So far, the freedom in the design of cooling holes was limited due to the manufacturing techniques. With emerging additive manufacturing methods, e.g. Direct Metal Laser Sintering, however, the geometry of the cooling holes is virtually unlimited. Especially the entrance and the curvature of the cooling holes determines the through-flow of the hole and consequently the cooling performance of the ejected cooling film.

In this study a set of combustor liner tiles with two innovative and four traditional cooling hole geometries will be analyzed and compared to each other in terms of cooling performance. The innovative geometries have bent cooling holes with a nearly horizontal outlet. All specimens have the same cooling hole pattern. The cooling performance is determined by comparing the total cooling effectiveness for a given pressure difference across the combustor liner tiles. The coolant mass flow rate is gained from experimentally determined discharge coefficients for the respective pressure difference. The first set of measurements is conducted in an atmospheric open-loop test rig at reduced temperatures but realistic density ratios between hot gas and coolant.

The specimen with the best cooling performance has been selected for an investigation in a high pressure test rig at realistic combustor conditions (pressure, temperature) including fluctuations of the cooling air to simulate combustion instabilities. The cooling performance again is determined by the total cooling effectiveness for a given pressure difference across the combustor liner tiles.

Copyright © 2016 by ASME and Rolls-Royce Deutschland Ltd & Co KG

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In