0

Full Content is available to subscribers

Subscribe/Learn More  >

Variations of Anchoring Pattern of a Bluff-Body Stabilized Laminar Premixed Flame as a Function of the Wall Temperature

[+] Author Affiliations
Sandrine Berger

CERFACS, Bordes, France

Stéphane Richard

Turbomeca, Bordes, France

Florent Duchaine, Laurent Gicquel

CERFACS, Toulouse, France

Paper No. GT2016-56473, pp. V05BT17A004; 12 pages
doi:10.1115/GT2016-56473
From:
  • ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
  • Volume 5B: Heat Transfer
  • Seoul, South Korea, June 13–17, 2016
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4979-8
  • Copyright © 2016 by ASME

abstract

Aircraft engine components are subject to hostile thermal environments. The solid parts in the hot stages encounter very high temperature levels and gradients that are critical for the engine lifespan. Combustion chamber walls in particular exhibit very heterogeneous thermal fields. The prediction of this specific thermal field is a very complex task as it results from complex interactions between fresh gas injections, cooling flow distributions, combustion, flame stabilization and thermal transfers to the solids. All these phenomena are tightly coupled and do not evolve linearly. Today, the design phase of a combustion chamber is strongly enhanced by the use of high fidelity computations such as Large Eddy Simulations (LES). However, thermal boundary conditions are rarely well known and are thus treated either as adiabatic or as approximated isothermal conditions. Such approximations on thermal boundary conditions can lead to several errors and inaccurate predictions of the combustion chamber flow field. With this in mind and to foresee the potential difficulties of LES based Conjugate Heat Transfer (CHT) predictions, the effect of the wall temperature on a laminar premixed flame stabilization is numerically investigated in this paper for an academic configuration. The considered case consists of a squared cylinder flame holder at a low Reynolds number for which several wall-resolved Direct Numerical Simulations (DNS) are performed varying the bluff-body wall thermal condition. In such a set-up, the reactive flow and the flame holder interact in a complex way with an underlying strong impact of the wall temperature. For a baseline configuration where the flame holder wall temperature is fixed at 700K, the flow field is steady with a flame stabilized thanks to the recirculation zone of the flame holder. As the wall temperature is decreased, the position of the stabilized flame moves further downstream. The flame remains steady until a threshold cold temperature is reached below which an instability appears. For solid temperatures above 700 K, the flame is seen to move further and further upstream. For very hot conditions, the flame even stabilizes ahead of the bluff-body. The various flow solution bifurcations as the flame stabilization evolves are detailed in this paper. Heat flux distribution along the bluff-body walls are observed to be dictated by the flame stabilization process illustrating different mechanisms while integration of these fluxes on the whole flame holder surface confirms that various theoretical equilibrium states may exist for this configuration. This suggests that computation of more realistic cases including thermal conduction in the bluff-body solid part could lead to different converged results depending on the initial thermal state.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In