0

Full Content is available to subscribers

Subscribe/Learn More  >

An Experimental Investigation of Impingement Heat Transfer in Narrow Space With Full-Height Pin Fins

[+] Author Affiliations
Yu Rao, Chaoyi Wan, Yuyang Liu

Shanghai Jiao Tong University, Shanghai, China

Jiang Qin

Harbin Institute of Technology, Harbin, China

Paper No. GT2016-57578, pp. V05BT16A015; 8 pages
doi:10.1115/GT2016-57578
From:
  • ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
  • Volume 5B: Heat Transfer
  • Seoul, South Korea, June 13–17, 2016
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4979-8
  • Copyright © 2016 by ASME

abstract

An experimental study has been conducted on multiple-jet impingement heat transfer in a narrow space with full-height pin fins under maximum cross flow scheme. Transient liquid crystal thermography method has been used to obtain the detailed impingement heat transfer distribution for the Reynolds numbers from 15,000 to 30,000. The experimental study shows that the spanwisely-averaged Nusselt number ratio Nu/(Re0.8 Pr1/3) is almost independent of Reynolds numbers, and the full-height pin-fin arrays can slightly improve the average Nusselt number on the endwall of the target plate by about 5.0%, and increase the pressure loss by up to about 17.9%. It is also found that heat transfer uniformity is also improved on the endwall of the target plate with pin fin arrays.

Copyright © 2016 by ASME
Topics: Heat transfer , Fins

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In