Full Content is available to subscribers

Subscribe/Learn More  >

Reduction in Flow Parameter Resulting From Volcanic Ash Deposition in Engine Representative Cooling Passages

[+] Author Affiliations
Sebastien Wylie, Alexander Bucknell, Peter Forsyth, Matthew McGilvray, David R. H. Gillespie

University of Oxford, Oxford, UK

Paper No. GT2016-57296, pp. V05BT16A011; 15 pages
  • ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
  • Volume 5B: Heat Transfer
  • Seoul, South Korea, June 13–17, 2016
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4979-8
  • Copyright © 2016 by ASME


Internal cooling passages of turbine blades have long been at risk to blockage through the deposition of sand and dust during fleet service life. The ingestion of high volumes of volcanic ash therefore poses a real risk to engine operability. An additional difficulty is that the cooling system is frequently impossible to inspect in order to assess the level of deposition. This paper reports results from experiments carried out at typical HP turbine blade metal temperatures (1163K to 1293K) and coolant inlet temperatures (800K to 900K) in engine scale models of a turbine cooling passage with film-cooling offtakes. Volcanic ash samples from the 2010 Eyjafjallajökull eruption were used for the majority of the experiments conducted. A further ash sample from the Chaiten eruption allowed the effect of changing ash chemical composition to be investigated. The experimental rig allows the metered delivery of volcanic ash through the coolant system at the start of a test. The key metric indicating blockage is the flow parameter which can be determined over a range of pressure ratios (1.01–1.06) before and after each experiment, with visual inspection used to determine the deposition location. Results from the experiments have determined the threshold metal temperature at which blockage occurs for the ash samples available, and characterise the reduction of flow parameter with changing particle size distribution, blade metal temperature, ash sample composition, film-cooling hole configuration and pressure ratio across the holes. There is qualitative evidence that hole geometry can be manipulated to decrease the likelihood of blockage. A discrete phase CFD model implemented in Fluent has allowed the trajectory of the ash particles within the coolant passages to be modelled, and these results are used to help explain the behaviour observed.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In