0

Full Content is available to subscribers

Subscribe/Learn More  >

Rotating Heat Transfer Measurements on a Multi-Pass Internal Cooling Channel: II — Experimental Tests

[+] Author Affiliations
Fabio Pagnacco, Luca Furlani, Alessandro Armellini, Luca Casarsa

Università degli Studi di Udine, Udine, Italy

Anthony Davis

Siemens Industrial Turbomachinery Ltd, Lincoln, UK

Paper No. GT2016-56307, pp. V05BT16A004; 11 pages
doi:10.1115/GT2016-56307
From:
  • ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
  • Volume 5B: Heat Transfer
  • Seoul, South Korea, June 13–17, 2016
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4979-8
  • Copyright © 2016 by Siemens Industrial Turbomachinery Ltd.

abstract

The present contribution is focused on heat transfer measurements on internal cooling channels of a high pressure gas turbine blade in static and rotating conditions.

A novel rig designed for the specific purpose was used to assess the heat transfer coefficients on a full internal cooling scheme of an idealized blade. The channel has a multi-pass design. Coolant enters at the blade hub in the leading edge region and move radially outwards inside a two-sided ribbed channel. The second passage is again a two-sided ribbed channel with a trapezoidal cross section of high aspect ratio, while inside the third leg low aspect-ratio cylindrical pin fins are arranged in a staggered configuration to promote flow turbulence. Inside the third passage, the coolant is progressively discharged at the blade trailing edge and finally at the blade tip. The test model differs with respect to the real design only because there is no curvature due to the blade camber. Conversely, the correct stagger angle of the real blade with respect to the rotation axis is preserved.

Experiments were performed for static and rotating conditions with engine similar conditions of Re=21000 and Ro=0.074, both defined at the channel inlet. Transient liquid crystal technique was used for the measurement of the heat transfer coefficient (HTC) on both pressure and suction sides internal surfaces of the channel. From the spatially resolved HTC maps available, it is possible to characterize the thermal performances of the whole passage and to highlight the effect of rotation.

Copyright © 2016 by Siemens Industrial Turbomachinery Ltd.

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In