0

Full Content is available to subscribers

Subscribe/Learn More  >

Effect of Rib Density on Flow and Heat Transfer in an Internal Cooling Passage

[+] Author Affiliations
Tomoko Hagari, Katsuhiko Ishida

Kawasaki Heavy Industries, Ltd., Akashi, Japan

Kenichiro Takeishi

Tokushima Bunri University, Sanuki, Japan

Masaharu Komiyama

Gifu University, Gifu, Japan

Yutaka Oda

Kansai University, Suita, Japan

Paper No. GT2016-57395, pp. V05BT11A015; 14 pages
doi:10.1115/GT2016-57395
From:
  • ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
  • Volume 5B: Heat Transfer
  • Seoul, South Korea, June 13–17, 2016
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4979-8
  • Copyright © 2016 by ASME

abstract

Effect of rib density on mechanism of flow and heat transfer enhancement in an internally-cooled channel with rib turbulators have been investigated numerically. Based on the experimental setup in the previous study [32], flowfield and heat transfer coefficient distributions were predicted with LES approach. The rib pitch-to-height ratios were 3 and 11, and Reynolds number based on the channel hydraulic diameter and bulk velocity was set at 30,000. Comparison of time-averaged flow and heat transfer characteristics between numerical and experimental results showed that prediction accuracy of the present numerical setup was reasonable.

The previous study [33] suggested that, for higher rib density, low-frequency velocity fluctuation characterizes heat transfer. To investigate its flow and heat transfer mechanism, instantaneous velocity and temperature fields were compared. For smaller rib density, small vortices constantly occurred from each rib and were dissipated into the mainstream before reaching the next rib. On the other hand, for higher rib density, relatively large vortex occurs above the ribs in addition to smaller vortices inside the cavity between the ribs. The large vortex occurs intermittently behind the second rib of the channel, and increases its size by interacting with smaller vortex downstream. For each rib pitch, similar trend was observed in the measured result obtained using Particle Image Velocimetry. This unsteady vortex structure would contribute to enhancing the heat transfer of a cooling channel with densely-arranged rib turbulators.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In