0

Full Content is available to subscribers

Subscribe/Learn More  >

Design for Additive Manufacturing: Internal Channel Optimization

[+] Author Affiliations
M. Pietropaoli, R. Ahlfeld, F. Montomoli

Imperial College London, London, UK

A. Ciani, M. D’Ercole

GE Oil & Gas Nuovo Pignone s.r.l, Florence, Italy

Paper No. GT2016-57318, pp. V05BT11A013; 9 pages
doi:10.1115/GT2016-57318
From:
  • ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
  • Volume 5B: Heat Transfer
  • Seoul, South Korea, June 13–17, 2016
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4979-8
  • Copyright © 2016 by ASME

abstract

The new possibilities offered by Additive Manufacturing (AM) can be exploited in gas turbines to produce a new generation of complex and efficient internal coolant systems. The flexibility offered by this new manufacturing method needs a paradigm shift in the design approach and a possible solution is offered by Topology Optimization.

The overall goal of this work is to propose an innovative method to design internal channels in gas turbines that that fully exploit AM capabilities. The present work contains a new application of a Fluid Topology sedimentation method to optimize the internal coolant geometries with minimal pressure losses while maximizing the heat exchange. The domain is considered as a porous medium with variable porosity: the solution is represented by the final solid distribution that constitutes the optimised structure. In this work the governing equations for an incompressible flow in a porous medium are considered together with a conjugate heat transfer equation that includes porosity dependent thermal diffusivity. An adjoint optimisation approach with steepest descent method is used to build the optimisation algorithm.

The simulations are carried out on two different geometries: a U-Bend and a straight duct. For the U-Bend a series of splitter is automatically generated by the code, minimizing the stagnation pressure losses. In the straight duct the impact of different porosity dependant thermal diffusivity is analysed to achieve high thermal exchange. The results show “rib like” structures that enhance the heat transfer.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In