0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Investigation of Heat Transfer in a High Aspect Ratio Double Wall Channel With Pin Fin and Jet Array Impingement

[+] Author Affiliations
Rui Kan, Shuqing Tian

AVIC Commercial Aircraft Engine Co., Ltd., Shanghai, China

Paper No. GT2016-56642, pp. V05BT11A006; 10 pages
doi:10.1115/GT2016-56642
From:
  • ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
  • Volume 5B: Heat Transfer
  • Seoul, South Korea, June 13–17, 2016
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4979-8
  • Copyright © 2016 by ASME

abstract

A combined impingement-pedestal geometry for turbomachinery double wall cooling application is studied numerically with the shear stress transport turbulence model. Conjugated CFD simulation is performed to investigate the cooling effectiveness distribution. The configuration consists of a high aspect ratio cooling duct, with jet array impinging onto the pin fin-roughed wall. The jet Reynolds number varies from 8,000 to 80,000, jet-to-target wall spacing is kept constant at Z/Dj=0.8. Three main parameters are investigated, including the jet Reynolds number, pin fin shapes (circular and elongated) and the relative location between jets and pin fins (the jet placed uniformly inside the duct or more densely at the front of the duct). For more detailed investigations, the pin fin diameter and impingement hole diameter are varied independently, and a total of 26 configurations are studied. The results show that the double wall configuration with pin fins significantly increases the heat transfer coefficients, compared to that with only impingement. Non-uniform jet arrangement results in a stronger crossflow and enhances heat transfer on the pins, which brings an increase of cooling effectiveness and more uniform temperature distribution.

Copyright © 2016 by ASME
Topics: Heat transfer

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In