0

Full Content is available to subscribers

Subscribe/Learn More  >

Identification of Multi-Parameter Flame Transfer Function for a Reheat Combustor

[+] Author Affiliations
Alessandro Scarpato, Rohit Kulkarni, Bruno Schuermans

GE Power, Baden, Switzerland

Lisa Zander

TU Berlin, Berlin, Germany

Paper No. GT2016-57699, pp. V04BT04A038; 9 pages
doi:10.1115/GT2016-57699
From:
  • ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
  • Volume 4B: Combustion, Fuels and Emissions
  • Seoul, South Korea, June 13–17, 2016
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4976-7
  • Copyright © 2016 by ASME

abstract

Lean premix technology is widely spread in gas turbine combustion systems, allowing modern power plants to fulfill very stringent emission targets. These systems are however also prone to thermoacoustic instabilities, which can limit the engine operating window. The thermoacoustic analysis of a combustor is thus a key element in its development process. GT24/GT26 reheat combustion system feature a unique technology where fuel is injected into a hot gas stream from a first combustor and auto-ignites in a sequential combustion chamber. Recently, a methodology was successfully developed and validated to analyze the dynamic response of an auto-ignition flame and to extract the Flame Transfer Function using unsteady Large-Eddy Simulations (LES) [GT2015-42622]. The flame was assumed to behave as a Single Input Single Output (SISO) system. The analysis qualitatively highlighted the important role of temperature and equivalence ratio fluctuations, but it was not possible to separate these effects from velocity perturbations. This is the main target of the present work: the flame is treated as a multi-parameter system, and compressible LES are conducted to extract the frequency-dependent flame transfer function. The simulations are forced with uncorrelated broadband signals in order to efficiently calculate the dynamic response over the frequency range of interest. The methodology introduced in this work will help to define stable operation concepts for gas turbines.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In