Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Analysis of the Dynamic Flame Response and Thermo-Acoustic Stability of a Full-Annular Lean Partially-Premixed Combustor

[+] Author Affiliations
Alessandro Innocenti, Antonio Andreini, Bruno Facchini

University of Florence, Florence, Italy

Matteo Cerutti

GE Oil & Gas, Florence, Italy

Paper No. GT2016-57182, pp. V04BT04A003; 13 pages
  • ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
  • Volume 4B: Combustion, Fuels and Emissions
  • Seoul, South Korea, June 13–17, 2016
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4976-7
  • Copyright © 2016 by ASME


A thermo-acoustic stability of a full-annular lean partially-premixed heavy-duty gas turbine combustor is carried out in the present paper. A sensitivity analysis is performed, varying the flame temperature for two operating conditions.

The complex interaction between the system acoustics and the turbulent flame is studied in Ansys Fluent, using Unsteady-RANS simulations with Flamelet-Generated Manifolds combustion model. Perturbations are introduced in the system imposing a broadband excitation as inlet boundary condition. The flame response is then computed exploiting system identification techniques. The identified flame transfer functions are compared each other and the results analysed in order to give more physical insight on the coupling mechanisms responsible for the flame dynamic response.

The effect of fuel mass flow fluctuations is then introduced as further driving input, describing the flame as a Multi-Input Single-Output system. Further in-depth studies are carried out on pilot flames aiming at replicating the dynamic response of the real flame and understanding the driving mechanism of thermo-acoustic instability onset as well.

The obtained results are implemented into a finite element model of the combustor, realized in COMSOL Multiphysics, to analyse the system stability.

Numerical model affordability has been assessed through comparisons with results from full-annular combustor experimental campaign carried out by GE Oil & Gas since the early phases of the design and development of a heavy-duty gas turbine. This allowed the discussion of the model ability to describe the stability properties of the combustor and to catch the instabilities onset as detected experimentally.

Valuable indications for future design optimization were also identified thanks to the obtained results.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In