0

Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Analysis of High-Amplitude Temporal Equivalence Ratio Oscillations in the Mixing Section of a Swirl-Stabilized Burner

[+] Author Affiliations
Richard Blümner, Christian Oliver Paschereit, Kilian Oberleithner

Technische Universität Berlin, Berlin, Germany

Bernhard Ćosić

MAN Diesel & Turbo SE, Oberhausen, Germany

Paper No. GT2016-56585, pp. V04AT04A032; 10 pages
doi:10.1115/GT2016-56585
From:
  • ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
  • Volume 4A: Combustion, Fuels and Emissions
  • Seoul, South Korea, June 13–17, 2016
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4975-0
  • Copyright © 2016 by ASME

abstract

Unsteady temporal fluctuations of the equivalence ratio in lean premixed gas turbine combustors are one of the most important driving mechanisms for thermoacoustic instabilities. In this work, high-amplitude equivalence ratio fluctuations in the mixing section of a swirl-stabilized burner are assessed for the first time. The applied non-intrusive sensor is based on fixed-wavelength modulation spectroscopy of methane at 1653 nm using a near-infrared tunable diode laser. The measurements are performed at isothermal operating conditions without the presence of a flame at 25°C and at atmospheric pressure. The equivalence ratio fluctuations are generated by acoustic forcing of the air flow while the fuel injection flow rate is kept constant. Acoustic forcing amplitudes up to 220% of the mean flow velocity are assessed. Measurements are conducted at different axial distances from the fuel injection point to study the spatio-temporal evolution of the equivalence ratio fluctuations. The results show a frequency-dependent saturation of temporal equivalence ratio fluctuations with increasing forcing amplitude, which can not be described through the available model. These results are in good agreement with preceding studies and indicate the saturation of the flame response due to a saturation of equivalence ratio fluctuations. Furthermore, a decreased attenuation of temporal mixture inhomogeneities for small forcing amplitudes is found.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In