Full Content is available to subscribers

Subscribe/Learn More  >

Impact of Heat Release Distribution on the Spinning Modes of an Annular Combustor With Multiple Matrix Burners

[+] Author Affiliations
Davide Laera, Sergio M. Camporeale

Politecnico di Bari, Bari, Italy

Kevin Prieur, Daniel Durox, Thierry Schuller, Sébastien Candel

Université Paris-Saclay, Chatenay-Malabry Cedex, France

Paper No. GT2016-56309, pp. V04AT04A018; 13 pages
  • ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
  • Volume 4A: Combustion, Fuels and Emissions
  • Seoul, South Korea, June 13–17, 2016
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4975-0
  • Copyright © 2016 by ASME


Annular combustors of aero-engines and gas turbine are often affected by thermo-acoustic combustion instabilities coupled by azimuthal modes. Previous experiments as well as theoretical and numerical investigations indicate that the coupling modes involved in this process may be standing or spinning but they provide diverse interpretations of the occurrence of these two types of oscillations. The present article reports a numerical analysis of instability coupled by a spinning mode in an annular combustor. This corresponds to experiments carried out on the MICCA test facility equipped with 16 matrix burners. Each burner response is represented by means of a global experimental flame describing function (FDF) and it is considered that the flames are sufficiently compact to interact with the mode without mutual interactions with adjacent burning regions. A harmonic balance nonlinear stability analysis is carried out by combining the FDF with a Helmholtz solver to determine the system dynamics trajectories in a frequency-growth rate plane. The influence of the distribution of the volumetric heat release corresponding to each burner is investigated in a first stage. Even though the 16 burners are all compact with respect to the acoustic wavelength considered and occupy the same volume, simulations reveal an influence of this volumetric distribution on frequencies and growth rates. This study emphasizes the importance of providing a suitable description of the flame zone geometrical extension and correspondingly an adequate representation of the level of heat release rate fluctuation per unit volume. It is found that these two items can be deduced from a knowledge of the heat release distribution under steady state operating conditions. Once the distribution of the heat release fluctuations is unequivocally defined, limit cycle simulations are performed. For the conditions explored, simulations retrieve the spinning nature of the self-sustained mode that was identified in the experiments both in the plenum and in the combustion chamber.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In