0

Full Content is available to subscribers

Subscribe/Learn More  >

Development of Efficient Small Scale Axial Turbine for Solar Driven Organic Rankine Cycle

[+] Author Affiliations
Ayad Al Jubori, Raya K. Al-Dadah, Saad Mahmoud, Khalil M. Khalil, A. S. Bahr Ennil

University of Birmingham, Edgbaston, UK

Paper No. GT2016-57845, pp. V003T25A011; 11 pages
doi:10.1115/GT2016-57845
From:
  • ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
  • Volume 3: Coal, Biomass and Alternative Fuels; Cycle Innovations; Electric Power; Industrial and Cogeneration; Organic Rankine Cycle Power Systems
  • Seoul, South Korea, June 13–17, 2016
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4974-3
  • Copyright © 2016 by ASME

abstract

Recently, the increase in fossil fuel consumption and associated adverse impact on the environment led to significant interest in renewable energy sources like solar. This paper presents a new methodology that integrates the ORC cycle analysis with modeling of an efficient small scale subsonic axial turbine at low temperature heat sources using wide range of organic working fluids like R123, R134a, R141b, R152a, R245fa, R290 and isobutene. The work involves detailed turbine analysis including 1D mean line approach, extensive 3D CFD simulations and ORC cycle analysis at inlet total pressure ranging from 2–5 bar corresponding to temperature range from 275K–365K to achieve the best turbine and cycle performance. This work provides a more reliable data base for small scale organic working fluids instead of using the map of large scale gas turbine.

The numerical simulation was performed using 3D RANS with SST turbulence model in ANSYS-CFX. Using iterative CFD simulations with various working fluids with subsonic inlet conditions, Mach number ranging from 0.6–0.65, results showed that using working fluid R123 for a turbine with mean diameter of 70mm, the maximum isentropic efficiency was 82% and power output 5.66 kW leading to cycle efficiency of 9.5%.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In