0

Full Content is available to subscribers

Subscribe/Learn More  >

Investigating the Effect of Changing the Working Fluid on the Three-Dimensional Flow Within Organic Rankine Cycle Turbines

[+] Author Affiliations
M. White, A. I. Sayma

City University London, London, UK

Paper No. GT2016-56106, pp. V003T25A002; 11 pages
doi:10.1115/GT2016-56106
From:
  • ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
  • Volume 3: Coal, Biomass and Alternative Fuels; Cycle Innovations; Electric Power; Industrial and Cogeneration; Organic Rankine Cycle Power Systems
  • Seoul, South Korea, June 13–17, 2016
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4974-3
  • Copyright © 2016 by ASME

abstract

For small and micro scale (< 50 kWe) organic Rankine cycle (ORC) systems to be commercially viable, systems are required that can operate efficiently over a range of operating conditions. This will lead to the high volume, low cost production that is critical to improve the current economy of scale, and reduce system costs. This requirement will inevitably mean utilising the same system within a range of different applications and may also require the same turbine to operate in different systems where the working fluid may change. Under these circumstances it is therefore important to develop suitable models that can determine the off design performance of these turbines. This will help to understand how the performance of existing ORC turbines responds to such changes. This topic is also of interest when considering retrofitting existing systems with more modern working fluids, which meet current environmental regulations. Recent work by the authors has developed a turbine design model and produced a candidate radial turbine design. Furthermore a modified similitude theory has been developed and validated, which can be used to predict turbine performance following a change in working fluid. This paper extends this analysis to a wider array of working fluids, and in addition to comparing the important performance parameters such as mass flow rate and turbine efficiency, a detailed comparison of the resulting flow field, blade loading distributions and velocity triangles is also presented. Predictions made using the modified similitude theory are compared to steady and unsteady 3D RANS CFD simulations completed using the commercial solver ANSYS CFX. Real fluid properties are accounted for by generating property tables using REFPROP. By comparing these important flow features the validity of the modified similitude model can be examined to a much greater extent.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In