Full Content is available to subscribers

Subscribe/Learn More  >

Investigation of Different Operation Strategies to Provide Balance Energy With an Industrial CHP Plant Using Dynamic Simulation

[+] Author Affiliations
Steffen Kahlert, Hartmut Spliethoff

Technische Universität München, Garching bei München, Germany

Paper No. GT2016-57166, pp. V003T20A009; 10 pages
  • ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
  • Volume 3: Coal, Biomass and Alternative Fuels; Cycle Innovations; Electric Power; Industrial and Cogeneration; Organic Rankine Cycle Power Systems
  • Seoul, South Korea, June 13–17, 2016
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4974-3
  • Copyright © 2016 by ASME


Intermittency of renewable electricity generation poses a challenge to thermal power plants. While power plants in the public sector see a decrease in operating hours, the utilization of industrial power plants is mostly unaffected because process steam has to be provided. This study investigates to what extent the load of a CHP plant can be reduced while maintaining a reliable process steam supply. A dynamic process model of an industrial combined CHP plant is developed and validated with operational data. The model contains a gas turbine, a single pressure HRSG with supplementary firing and an extraction condensing steam turbine. Technical limitations of the gas turbine, the supplementary firing and the steam turbine constrain the load range of the plant. In consideration of these constraints, different operation strategies are performed at variable loads using dynamic simulation. A simulation study shows feasible load changes in 5 min for provision of secondary control reserve. The load change capability of the combined cycle plant under consideration is mainly restricted by the water-steam cycle. It is shown that both the low pressure control valve of the extraction steam turbine and the high pressure bypass control valve are suitable to ensure the process steam supply during the load change. The controllability of the steam turbine load and the process stability are sufficient as long as the supplementary is not reaching the limits of the operating range.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In