Full Content is available to subscribers

Subscribe/Learn More  >

Thermo-Economic Analysis of a Photovoltaic-Fuel Cell Hybrid System With Energy Storage for CHP Production in Household Sector

[+] Author Affiliations
M. A. Ancona, M. Bianchi, A. De Pascale, F. Melino, A. Peretto, L. Branchini

Università di Bologna, Bologna, Italy

Paper No. GT2016-56461, pp. V003T20A005; 11 pages
  • ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
  • Volume 3: Coal, Biomass and Alternative Fuels; Cycle Innovations; Electric Power; Industrial and Cogeneration; Organic Rankine Cycle Power Systems
  • Seoul, South Korea, June 13–17, 2016
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4974-3
  • Copyright © 2016 by ASME


The penetration of renewable sources, particularly wind and solar, into the grid has been increasing in recent years. As a consequence, there have been serious concerns over reliable and safety operation of power systems. One possible solution, to improve grid integrity, is to integrate energy storage devices into power system network: storing energy produced in periods of low demand to later use, ensuring full exploitation of intermittent available sources. Focusing on photovoltaic energy system, energy storage is needed with the purpose of ensuring continuous power flow to minimize or to neglect electrical grid supply. A comprehensive study on a hybrid micro-CHP system based on photovoltaic panels using hydrogen as energy storage technologies has been performed. This study examines the feasibility of replacing electricity provided by the grid with a hybrid system to meet household demand. This paper is a part of an experimental and a theoretical study which is currently under development at University of Bologna where a test facility is under construction for the experimental characterization of a small scale cogenerative power system. This paper presents the theoretical results of a hybrid system performance simulations made of a photovoltaic array an electrolyzer with a H2 tank and a Proton Exchange Membrane fuel cell stack designed to satisfy typical household electrical demand. The performance of this system have been evaluated by the use of a calculation code, in-house developed by the University of Bologna. Results of the carried out parametric investigations identify photovoltaic and fuel cell systems’ optimal size in order to minimize the purchasing of electrical energy from the grid. Future activities will be the tuning of the software with the experimental results, in order to realize a code able to define the correct size of each sub-system, once the load profile of the utility is known or estimated.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In