Full Content is available to subscribers

Subscribe/Learn More  >

ALGOR Gas Turbine Performance Modular Tool: One Dimensional Turbine Module Validation

[+] Author Affiliations
Stefano Piola, Roberto Canepa, Andrea Silingardi, Stefano Cecchi

Ansaldo Sviluppo Energia, Genoa, Italy

Carlo Carcasci

University of Florence, Florence, Italy

Edoardo Bolgè

Politecnico di Torino, Turin, Italy

Paper No. GT2016-57631, pp. V003T08A010; 10 pages
  • ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
  • Volume 3: Coal, Biomass and Alternative Fuels; Cycle Innovations; Electric Power; Industrial and Cogeneration; Organic Rankine Cycle Power Systems
  • Seoul, South Korea, June 13–17, 2016
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4974-3
  • Copyright © 2016 by ASME


One dimensional codes play a key role in gas turbine performance simulation: once they are calibrated they can give reliable results within very short computational time if compared to two or three dimensional analysis. Thanks to their ability to quickly evaluate flow, pressure and temperature along the energy conversion from fluid to shaft or reverse, one dimensional tools fit the requirements of modular-structured program for the simulation of complete gas turbine. In ASEN experience, ALGOR heat and mass balance software is used as a platform for system integration between each disciplines by means of a modular structure in which a large number of modules, chosen from the available library, are freely connected allowing to potentially analyze any gas turbine engine configuration. ALGOR code provides advanced cycle calculation capabilities for example in case that cooling and secondary air system layout modification have to be considered in design process. In these situations, a turbine map-based approach is hardly applicable, while a one dimensional aerodynamic row by row simulation can provide a suitable method for off-design turbine behavior prediction. In ASEN practice, ALGOR turbine module is calibrated at design point on one dimensional data provided by turbine designers and is then adopted for the engine configuration optimization or off-design performance evaluation. This paper presents the validation of the off-design performance prediction given by the ALGOR embedded 1D turbine model comparing calculated results with experimental ones. The warm air full scale test rig investigated within the GE-NASA “Energy Efficient Engine” program for the aerodynamic evaluation of a two stages high pressure turbine has been chosen as validation case. It includes both experimental performance maps varying turbine operating conditions such as speed and pressure ratio extending to the sub-idle and starting region and an analysis of cooling flow variation effect on turbine performance. Literature available loss and exit flow angle correlations are implemented and compared to experimental data. The results given by each of them are analyzed to appreciate their accuracy in evaluating efficiency and flow variations. In addition the paper shows the ability of the 1D turbine module to consider secondary air system modification impact on performance comparing calculated results to experimental ones.

Literature correlations tuning on proprietary experimental results could further improve the tool performance for the off-design evaluation of ASEN turbine geometries.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In