0

Full Content is available to subscribers

Subscribe/Learn More  >

Flexible Combined Cycle Gas Turbine Power Plant Utilising Organic Rankine Cycle Technology

[+] Author Affiliations
Michael Welch

Siemens Industrial Turbomachinery Ltd, Lincoln, UK

Nicola Rossetti

Turboden S.r.l., Brescia, Italy

Paper No. GT2016-56116, pp. V003T08A001; 10 pages
doi:10.1115/GT2016-56116
From:
  • ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
  • Volume 3: Coal, Biomass and Alternative Fuels; Cycle Innovations; Electric Power; Industrial and Cogeneration; Organic Rankine Cycle Power Systems
  • Seoul, South Korea, June 13–17, 2016
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4974-3
  • Copyright © 2016 by ASME

abstract

Historically gas turbine power plants have become more efficient and reduced the installed cost/MW by developing larger gas turbines and installing them in combined cycle configuration with a steam turbine. These large gas turbines have been designed to maintain high exhaust gas temperatures to maximise the power generation from the steam turbine and achieve the highest overall electrical efficiencies possible.

However, in today’s electricity market, with more emphasis on decentralised power generation, especially in emerging nations, and increasing penetration of intermittent renewable power generation, this solution may not be flexible enough to meet operator demands.

An alternative solution to using one or two large gas turbines in a large central combined cycle power plant is to design and install multiple smaller decentralised power plant, based on multiple gas turbines with individual outputs below 100MW, to provide the operational flexibility required and enable this smaller power plant to maintain a high efficiency and low emissions profile over a wide load range. This option helps maintain security of power supplies, as well as providing enhanced operational flexibility through the ability to turn turbines on and off as necessary to match the load demand.

The smaller gas turbines though tend not to have been optimised for combined cycle operation, and their exhaust gas temperatures may not be sufficiently high, especially under part load conditions, to generate steam at the conditions needed to achieve a high overall electrical efficiency.

ORC technology, thanks to the use of specific organic working fluids, permits efficient exploitation of low temperatures exhaust gas streams, as could be the case for smaller gas turbines, especially when working on poor quality fuels.

This paper looks at how a decentralised power plant could be designed using Organic Rankine Cycle (ORC) in place of the conventional steam Rankine Cycle to maximise power generation efficiency and flexibility, while still offering a highly competitive installed cost. Combined cycle power generation utilising ORC technology offers a solution that also has environmental benefits in a water-constrained World.

The paper also investigates the differences in plant performance for ORC designs utilising direct heating of the ORC working fluid compared to those using an intermediate thermal oil heating loop, and looks at the challenges involved in connecting multiple gas turbines to a single ORC turbo-generator to keep installed costs to a minimum.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In