0

Full Content is available to subscribers

Subscribe/Learn More  >

Combined Cycle Engine Cascades Achieving High Efficiency

[+] Author Affiliations
Andy Schroder, Mark G. Turner

University of Cincinnati, Cincinnati, OH

Rory A. Roberts

Wright State University, Dayton, OH

Paper No. GT2016-58004, pp. V003T06A021; 14 pages
doi:10.1115/GT2016-58004
From:
  • ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
  • Volume 3: Coal, Biomass and Alternative Fuels; Cycle Innovations; Electric Power; Industrial and Cogeneration; Organic Rankine Cycle Power Systems
  • Seoul, South Korea, June 13–17, 2016
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4974-3
  • Copyright © 2016 by ASME

abstract

Two combined cycle engine cascade concepts are presented in this paper. The first uses a traditional open loop gas turbine engine (Brayton cycle) with a combustor as the topping cycle and a series of supercritical carbon dioxide (S–CO2) engines as intermediate cycles and a bottoming cycle. A global optimization of the engine design parameters was conducted to maximize the combined efficiency of all of the engines. A combined cycle efficiency of 65.0% is predicted. The second combined cycle configuration utilizes a fuel cell inside of the topping cycle in addition to a combustor. The fuel cell utilizes methane fuel. The waste heat from the fuel cell is used to heat the high pressure air. A combustor is also used to burn the excess fuel not usable by the fuel cell. After being heated, the high pressure, high temperature air expands through a turbine to atmospheric pressure. The low pressure, intermediate temperature exhaust air is then used to power a cascade of supercritical carbon dioxide engines. A combined efficiency of 73.1% using the fuel lower heating value is predicted with this combined fuel cell and heat engine device. Details of thermodynamics as well as the (S–CO2) engines are given.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In