0

Full Content is available to subscribers

Subscribe/Learn More  >

Introduction of a New Numerical Simulation Tool to Analyze Micro Gas Turbine Cycle Dynamics

[+] Author Affiliations
Martin Henke, Thomas Monz, Manfred Aigner

German Aerospace Centre (DLR), Stuttgart, Germany

Paper No. GT2016-56335, pp. V003T06A007; 11 pages
doi:10.1115/GT2016-56335
From:
  • ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
  • Volume 3: Coal, Biomass and Alternative Fuels; Cycle Innovations; Electric Power; Industrial and Cogeneration; Organic Rankine Cycle Power Systems
  • Seoul, South Korea, June 13–17, 2016
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4974-3
  • Copyright © 2016 by ASME

abstract

Micro gas turbine (MGT) technology is evolving towards a large variety of novel applications, like weak gas electrification, inverted Brayton cycles and fuel cell hybrid cycles; however, many of these systems show very different dynamic behaviors compared to conventional MGTs. In addition, some applications impose more stringent requirements on transient maneuvers, e.g. to limit temperature and pressure gradients in a fuel cell hybrid cycle. Besides providing operational safety, optimizing system dynamics to meet the variable power demand of modern energy markets is also of increasing significance.

Numerical cycle simulation programs are crucial tools to analyze these dynamics without endangering the machines, and to meet the challenges of automatic control design. For these tasks, complete cycle simulations of transient maneuvers lasting several minutes need to be calculated. Moreover, sensitivity analysis and optimization of dynamic properties like automatic control systems require many simulation runs. To perform these calculations in an acceptable timeframe, simplified component models based on lumped volume or one-dimensional discretization schemes are necessary. The accuracy of these models can be further improved by parameter identification, as most novel applications are modifications of well-known MGT systems and rely on proven, characterized components.

This paper introduces a modular in-house simulation tool written in Fortran to simulate the dynamic behavior of conventional and novel gas turbine cycles with real-time calculation speed. Thermodynamics, gas composition, heat transfer to the casing and surroundings, shaft rotation and control system dynamics as well as mass and heat storage are simulated together to account for their interactions.

The simulation tool is explained in detail, including a description of all component models, coupling of the elements and the ODE-solver. Finally, validation results of the simulator based on measurement data from the DLR Turbec T100 recuperated MGT test rig are presented, including cold start-up and shutdown maneuvers.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In