0

Full Content is available to subscribers

Subscribe/Learn More  >

Combustion of Aldehydes in the Negative Temperature Coefficient Region: Products and Pathways

[+] Author Affiliations
Ghazal Barari, Batikan Koroglu, Artëm E. Masunov, Subith Vasu

University of Central Florida, Orlando, FL

Paper No. GT2016-58025, pp. V003T03A012; 11 pages
doi:10.1115/GT2016-58025
From:
  • ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
  • Volume 3: Coal, Biomass and Alternative Fuels; Cycle Innovations; Electric Power; Industrial and Cogeneration; Organic Rankine Cycle Power Systems
  • Seoul, South Korea, June 13–17, 2016
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4974-3
  • Copyright © 2016 by ASME

abstract

Aldehydes are major intermediates in oxidation and pyrolysis of hydrocarbons and particularly biofuels. While the high temperature oxidation chemistry of C3-C5 aldehydes have been studied in the literature, a comprehensive low temperature kinetics remains unaddressed. In this work, acetaldehyde, propanal, and 2-propenal (acrolein) oxidation was investigated at low-temperature combustion condition (500–700 K). The isomer specific products concentrations as well as the time-resolved profiles were studied using Sandia’s multiplexed photoionization mass spectroscopy (MPIMS) with synchrotron radiation from the Advanced Light Source (ALS). The laser pulsed photolysis generates chlorine atoms which react with aldehydes to form the parent radicals. In the presence of excess oxygen, these radicals react with O2 and form RO2 radicals. The temperature dependent products yields are determined for 500 K to 700 K and the competition between the channels contributing to the formation of each product is discussed. In acetaldehyde oxidation, the formation of the main products are associated with HO2 elimination channel from QOOH or direct H atom elimination from the parent radicals. In propanal oxidation, the most intensive signal peak was associated with acetaldehyde (m/z=44) which was formed through the reaction of α′-R with O2. α′-RO2 intermediate decomposes to acetaldehyde+OH+CO via Waddington mechanism and formation of five-member ring transition state. In 2-propenal oxidation, the unsaturated radical produced from α-R reacts with O2 to form the primary products.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In