0

Full Content is available to subscribers

Subscribe/Learn More  >

A Study on the Emissions of Alternative Aviation Fuels

[+] Author Affiliations
Sebastian Riebl, Marina Braun-Unkhoff, Uwe Riedel

German Aerospace Center (DLR), Stuttgart, Germany

Paper No. GT2016-57361, pp. V003T03A006; 14 pages
doi:10.1115/GT2016-57361
From:
  • ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
  • Volume 3: Coal, Biomass and Alternative Fuels; Cycle Innovations; Electric Power; Industrial and Cogeneration; Organic Rankine Cycle Power Systems
  • Seoul, South Korea, June 13–17, 2016
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4974-3
  • Copyright © 2016 by ASME

abstract

Currently, the aviation sector is seeking for alternatives to kerosene from crude oil, as part of the efforts combating climate change by reducing greenhouse gas (GHG) emissions, in particular carbon dioxide (CO2), and ensuring security of supply at affordable prices.

Several synthetic jet fuels have been developed including sustainable bio-kerosene, a low-carbon fuel. Over the last years, the technical feasibility as well as the compatibility of alternative jet fuels with today’s planes has been proven However, when burning a jet fuel, the exhaust gases are a mixture of many species, going beyond CO2 and water (H2O) emissions, with nitrogen oxides (NOx), carbon monoxide (CO), unburned hydrocarbons (UHC) including aromatic species and further precursors of particles and soot among them. These emissions have an impact on the local air quality as well as on the climate (particles, soot, contrails). Therefore, a detailed knowledge and understanding of the emission patterns when burning synthetic aviation fuels is inevitable.

In the present paper, these issues are addressed by studying numerically the combustion of four synthetic jet fuels (Fischer-Tropsch fuels). For reference, two types of crude-oil based kerosenes (Jet A-1 and Jet A) are considered, too. Plug flow calculations were performed by using a detailed chemical-kinetic model validated previously. The composition of the multi-component jet fuels were imaged by using the surrogate approach. Calculations were done for relevant temperatures, pressures, residence times, and fuel equivalence ratios φ.

Results are discussed for NOx, CO as well as benzene and acetylene as major soot precursors. According to the predictions, the NOx and CO emissions are within about ± 10% for all fuels considered, within the parameter range studied: T = 1800 K, T = 2200 K; 0.25 ≤ φ ≤ 1.8; p = 40 bar; t = 3 ms. The aromatics free GtL (Gas to Liquid) fuel displayed higher NOx values compared to Jet A-1/A. In addition, synthetic fuels show slightly lower (better) CO emission data than Jet A-1/A. The antagonist role of CO and NOx is apparent. Major differences were predicted for benzene emissions, depending strongly on the aromatics content in the specific fuel, with lower levels predicted for the synthetic aviation fuels. Acetylene levels show a similar, but less pronounced, effect.

Copyright © 2016 by ASME
Topics: Fuels , Aviation , Emissions

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In