Full Content is available to subscribers

Subscribe/Learn More  >

Investigation on Jet Breakup of High-Viscous Fuels for Entrained Flow Gasification

[+] Author Affiliations
Thomas Müller, Peter Habisreuther, Nikolaos Zarzalis, Alexander Sänger, Tobias Jakobs, Thomas Kolb

Karlsruhe Institute of Technology, Karlsruhe, Germany

Paper No. GT2016-56371, pp. V003T03A003; 11 pages
  • ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
  • Volume 3: Coal, Biomass and Alternative Fuels; Cycle Innovations; Electric Power; Industrial and Cogeneration; Organic Rankine Cycle Power Systems
  • Seoul, South Korea, June 13–17, 2016
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4974-3
  • Copyright © 2016 by ASME


The present study focuses on the atomization behaviour of liquids in external mixing twin fluid nozzles and investigates a wide range of viscosities as well as different nozzle geometries at a gas to liquid ratio (GLR) typically used in entrained flow gasification.

In a first stage experiments were performed using water and water-glycerol-mixtures as Newtonian model fuels with liquid viscosity up to 400 mPa s. Jet breakup was investigated qualitatively using a high speed camera as well as using a PIV and LDA-System for detailed quantitative investigation of the flow field. Two different primary instabilities flapping and pulsating mode were detected which are dependent on operating conditions of the nozzle (e.g. GLR) and rheological properties of the liquid phase (e.g. liquid viscosity) as well as nozzle geometry. For better interpretation of the phenomena occurring during jet breakup a frequency-analysis of the primary instabilities was performed using the pictures of the high speed camera.

In addition, compressible large eddy simulations (LES) were preformed to describe the experimental observations and to capture the morphology of the primary breakup as well as the important flow field characteristics. The numerical simulations were conducted by means of the open source CFD software OpenFOAM. A Volume of Fluid (VOF) approach was used to track the unsteady evolution and breakup of the liquid jet. Comparison of experimental and numerical results shows a good agreement concerning breakup frequency, velocity fields and morphology. The breakup frequency varied in a range of 430 to 757 Hz depending on operating condition and nozzle geometry.

Based on these results a more detailed understanding of the physics leading to liquid jet breakup and finally atomization process will be available.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In