Full Content is available to subscribers

Subscribe/Learn More  >

Computational Simulation of Deposition in a Cooled High-Pressure Turbine Stage With Hot Streaks

[+] Author Affiliations
Robin Prenter, Ali Ameri, Jeffrey P. Bons

Ohio State University, Columbus, OH

Paper No. GT2016-57815, pp. V02DT44A034; 13 pages
  • ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
  • Volume 2D: Turbomachinery
  • Seoul, South Korea, June 13–17, 2016
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4972-9
  • Copyright © 2016 by ASME


Ash particle deposition in a high-pressure turbine stage was numerically investigated using steady (RANS) and unsteady (URANS) methods. An inlet temperature profile consisting of Gaussian non-uniformities (hot streaks) was imposed on the vanes, with vane cooling simulated using a constant vane wall temperature. The steady case utilized a mixing plane at the vane-rotor interface, while a sliding mesh was used for the unsteady case. Corrected speed and mass flow were matched to an experiment involving the same geometry, so that the flow solution could be validated against measurements. Particles ranging from 1 to 65 μm were introduced into the vane domain, and tracked using an Eulerian-Lagrangian tracking model. A novel particle rebound and deposition model was employed to determine particles’ stick/bounce behavior upon impact with a surface. Predicted impact and capture distributions for different diameters were compared between the steady and unsteady methods, highlighting effects from the circumferential averaging of the mixing plane. The mixing plane simulation was found to over predict impact and capture efficiencies compared with the unsteady calculation, as well as over predict particle temperature upon impact with the blade surface. Blade impact efficiencies increased with higher Stokes numbers in both simulations, with multiple rebounds occurring on the pressure surface in the mixing plane case, and on the suction surface in the unsteady case.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In