0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Investigation of Three-Dimensional Separation in an Axial Flow Compressor: The Influence of Free-Stream Turbulence Intensity and Endwall Boundary Layer State

[+] Author Affiliations
Ashley D. Scillitoe, Paul G. Tucker

University of Cambridge, Cambridge, UK

Paolo Adami

Rolls-Royce Deutschland, Blankenfelde-Mahlow, Germany

Paper No. GT2016-57241, pp. V02DT44A025; 12 pages
doi:10.1115/GT2016-57241
From:
  • ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
  • Volume 2D: Turbomachinery
  • Seoul, South Korea, June 13–17, 2016
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4972-9
  • Copyright © 2016 by Rolls-Royce plc

abstract

Regions of three-dimensional separations are an inherent flow feature of the suction surface - endwall corner in axial compressors. These corner separations can cause a significant total pressure loss and reduce the compressor’s efficiency. This paper uses wall-resolved LES to investigate the loss sources in a corner separation, and examines the influence of the inflow turbulence on these sources.

Different subgrid scale (SGS) models are tested and the choice of model is found to be important. The σ SGS model, which performed well, is then used to perform LES of a compressor endwall flow. The time-averaged data is in good agreement with measurements. The viscous and turbulent dissipation are used to highlight the sources of loss, with the latter being dominant. The key loss sources are seen to be the 2D laminar separation bubble and trailing edge wake, and the 3D flow region near the endwall.

Increasing the free-stream turbulence intensity (FST) changes the suction surface boundary layer transition mode from separation induced to bypass. However, it doesn’t significantly alter the transition location and therefore the corner separation size. Additionally, the FST doesn’t noticeably interact with the corner separation itself, meaning that in this case the corner separation is relatively insensitive to the FST.

The endwall boundary layer state is found to be significant. A laminar endwall boundary layer separates much earlier leading to a larger passage vortex. This significantly alters the endwall flow and loss. Hence, the need for accurate boundary measurements is clear.

Copyright © 2016 by Rolls-Royce plc

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In