0

Full Content is available to subscribers

Subscribe/Learn More  >

Corner Separation Dynamics in a Linear Compressor Cascade

[+] Author Affiliations
Gherardo Zambonini, Xavier Ottavy

Ecole Centrale de Lyon, Ecully, France

Jochen Kriegseis

Karlsruhe Institute of Technology, Karlsruhe, Germany

Paper No. GT2016-56454, pp. V02DT44A010; 15 pages
doi:10.1115/GT2016-56454
From:
  • ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
  • Volume 2D: Turbomachinery
  • Seoul, South Korea, June 13–17, 2016
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4972-9
  • Copyright © 2016 by ASME

abstract

This paper considers the inherent unsteady behavior of the three dimensional separation in the corner region of a subsonic linear compressor cascade equipped of thirteen NACA 65-009 profile blades. Detailed experimental measurements were carried out at different sections in spanwise direction achieving, simultaneously, unsteady wall pressure signals on the surface of the blade and velocity fields by time-resolved PIV measurements. Two configurations of the cascade were investigated with an incidence of 4° and 7°, both at Re = 3.8 * 105 and Ma = 0.12 at the inlet of the facility. The intermittent switch between the two statistical preferred sizes of separation, large and almost suppressed, is called bimodal behaviour. The existence of such oscillation, reported at first in previous experimental and numerical works on the same test rig, is confirmed for both incidences. Additionally, the present PIV measurements provide, for the first time, time-resolved flow visualizations of the size switch of the separation with an extended field of view covering the entire blade section. The interaction of random large structures of the incoming boundary layer with the blade is found to be a predominant element that destabilizes the separation boundary. The recirculation region enlarges when these high vorticity perturbations blend with larger eddies situated in the aft part of the blade. Such massive separation persists until the blockage in the passage causes the breakdown of the largest structures in the aft part of the blade. The flow starts again to accelerate and the separation is almost suppressed. Finally, POD analysis is carried out to decompose flow modes and to contribute to the clarification of underlying cause-effect-relations, which predominate the dynamics of the present flow scenario.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In