0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Research on the Mixing Mechanism of Lobed Mixer With New De-Swirling Structure

[+] Author Affiliations
Zhijun Lei, Jianbo Gong, Yanfeng Zhang, Shangmei Su, Chunyan Hu

Chinese Academy of Sciences, Beijing, China

Paper No. GT2016-58120, pp. V02AT40A006; 14 pages
doi:10.1115/GT2016-58120
From:
  • ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
  • Volume 2A: Turbomachinery
  • Seoul, South Korea, June 13–17, 2016
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4969-9
  • Copyright © 2016 by ASME

abstract

A detailed numerical simulation is presented to investigate the new de-swirling methods and their effect on the mixing mechanisms of a turbofan mixer with 12 lobes. The numerical simulation employed a commercial solver, ANSYS CFX, using k-ω SST model. The core-to-bypass temperature ratio and pressure ratio were set to 2.59, and 0.97 respectively, giving the Mach number of 0.66 and bypass ratio of 2.65 at mixing nozzle outlet. The inlet swirl typically accelerates the jet-flow mixing by enhancing the vortices intensity and interaction, but leakage swirling flow can cause a three-dimensional separation bubble and the recirculation zone resulting in the dramatic increasing the total pressure loss and thrust loss. Removal of the leakage swirling flow between the lobes’ trough and centre-body was the key to limit the negative influence of inlet swirl.

Two IGV design were investigated, DS1 and DS2. DS1 was installed at the upstream of the lobed mixer, could remove the negative effect of inlet swirl properly, but also inhibited the active role of the inlet swirl. The total pressure and thrust loss reduced by 0.31% and 3.8%, respectively, but the mixing efficiency also decreased by 1.72%. DS2, an integrated strut with the lobed mixer design, not only ensured the structure strength of the lobed mixer, but also reduced the length and weight of the exhaust system. This method suppressed the flow separation bubble on centre-body to some extent, and eliminated the recirculation zone downstream of the cenrebody, resulting in the total pressure loss decrease of 0.31% and thrust gain of 3.63%. On the other hand, the method DS2 also made full use of the inlet swirl to enhance the jet-flow mixing, resulting in the mixing efficiency increased 1.54% compared with that of the DS1 case. Under the off-design conditions with the incidence angle of ±10°, the aerodynamic performance of the DS2 cases didn’t changed too much such as the DS1 cases.

Copyright © 2016 by ASME
Topics: Swirling flow

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In