0

Full Content is available to subscribers

Subscribe/Learn More  >

Investigation on the Effect of Streamwise Grooves on Controlling Corner Flow Separation

[+] Author Affiliations
Weilin Yi, Jiabin Li, Jia Yu, Lucheng Ji

Beijing Institute of Technology, Beijing, China

Paper No. GT2016-58141, pp. V02AT37A054; 11 pages
doi:10.1115/GT2016-58141
From:
  • ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
  • Volume 2A: Turbomachinery
  • Seoul, South Korea, June 13–17, 2016
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4969-9
  • Copyright © 2016 by ASME

abstract

Flow separations often take place in the junction of blades and endwalls and limit seriously the aerodynamic loading increase of turbomachinery, which are caused mainly by mixing of the boundary layers on blades and endwall surfaces and the transverse secondary flow generated by the pressure difference between the pressure and suction side.

Firstly, focusing on a linear diffusion cascade with 42 degrees turning angle, it can be found that the transverse secondary flow can be reduced by inviscid hub and the flow separation is eliminated further through the numerical comparison between the viscous and inviscid hub cases. So the transverse secondary flow is the dominate factor for the flow separation in this cascade. We should try to control the transverse secondary flow to reduce the flow separation.

Secondly, based above analysis, the flow separation can be controlled effectively if we can cut off the secondary flow. So nine kinds of streamwise groove schemes are designed and analyzed. It can be seen that the streamwise grooves at the end wall inhibit obviously the transverse secondary flow but the flow structure change is different at different span. There is an optimum combination of width and height of groove, and the height is more important than width.

Thirdly, the detailed flow analysis of best scheme with smaller width, moderate height are carried out. It can decrease the separation zone scope at the corner zone, reduce the energy loss coefficient and also reduce the flow loss.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In