0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Simulation of Particulates in Multi-Stage Axial Compressors

[+] Author Affiliations
Swati Saxena, Giridhar Jothiprasad, Corey Bourassa

GE Global Research Center, Niskayuna, NY

Byron Pritchard

GE Aviation, Evandale, OH

Paper No. GT2016-57917, pp. V02AT37A049; 12 pages
doi:10.1115/GT2016-57917
From:
  • ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
  • Volume 2A: Turbomachinery
  • Seoul, South Korea, June 13–17, 2016
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4969-9
  • Copyright © 2016 by ASME

abstract

Aircraft engines ingest airborne particulate matter, such as sand, dirt, and volcanic ash, into their core. The ingested particulate is transported by the secondary flow circuits via compressor bleeds to the high pressure turbine and may deposit resulting in turbine fouling and loss of cooling effectiveness. Prior publications focused on particulate deposition and sand erosion patterns in a single stage of a compressor or turbine. The current work addresses the migration of ingested particulate through the high pressure compressor and bleed systems. This paper describes a 3D CFD methodology for tracking particles along a multi-stage axial compressor and presents particulate ingestion analysis for a high pressure compressor section. The commercial CFD multi-phase solver ANSYS CFX R has been used for flow and particulate simulations. Particle diameters of 20, 40, and 60 microns are analyzed. Particle trajectories and radial particulate profiles are compared for these particle diameters. The analysis demonstrates how the compressor centrifuges the particles radially towards the compressor case as they travel through the compressor; the larger diameter particles being more significantly affected. Non-spherical particles experience more drag as compared to spherical particles and hence a qualitative comparison between spherical and non-spherical particles is shown.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In