Full Content is available to subscribers

Subscribe/Learn More  >

Efficient Modeling Strategy of an Axial Compressor Fan-Stage Under Inlet Distortion

[+] Author Affiliations
Bryan Lobo

ANSYS India Pvt Ltd, Pune, India

Laith Zori

ANSYS Inc., Lebanon, NH

Paul Galpin, William Holmes

ANSYS Canada Ltd, Waterloo, ON, Canada

Paper No. GT2016-57467, pp. V02AT37A039; 11 pages
  • ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
  • Volume 2A: Turbomachinery
  • Seoul, South Korea, June 13–17, 2016
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4969-9
  • Copyright © 2016 by ASME


The front fan of a turbofan aircraft engine often operates under distorted inlet flow conditions. This distortion is caused by either flight operating conditions, such as a crosswind or boundary layer ingestion, or due to its nacelle installation. These flow conditions negatively impact the aerodynamic performance of the compression system. Moreover, the asymmetry of the flow causes non-uniform circumferential pressure distortions which can trigger a strong aeromechanical response in the fan blades.

Numerical simulation can contribute to the design process if it can accurately predict the aerodynamic performance penalties and the loads experienced by the fan blades, thereby identifying potential problems early in the design phase. This requires accurate accounting of the pressure loads on the fan from the upstream inlet distortion and the potential effect of the downstream stator row. The loads are inherently transient in nature, requiring solutions on the full wheel geometry. However, full wheel modeling is expensive and not practical early in the design cycle. In this work, an efficient modeling strategy is proposed for an axial compressor fan with a downstream stator row (NASA Stage 67, rotor/stator) undergoing inlet distortion.

A multi-frequency frozen gust analysis using the Fourier-Transformation (FT) pitch-change method is utilized to solve this flow problem on a reduced geometry (two rotor-passages only). A once-per-revolution inlet distortion modeled as a cosine variation in total pressure is imposed upstream of the rotor. The influence of the stator row on the fan is accounted for within a transient simulation by imposing a 360 degree profile at the exit of the rotor. The profile from the stator row is obtained previously from a steady-state simulation using a multiple mixing-plane approach. In this approach the stator potential flow and the pressure variation in the stator row due to inflow distortion are accounted for.

The paper compares the reduced geometry model with full wheel transient predictions, thereby demonstrating the efficiency of the proposed method both in terms of accuracy and solution speedup. Important aerodynamic performance parameters as well as flow field solution monitors are compared to assess the viability of this modeling strategy.

Copyright © 2016 by ASME
Topics: Compressors , Modeling



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In