Full Content is available to subscribers

Subscribe/Learn More  >

Design of Compressor Endwall Velocity Triangles

[+] Author Affiliations
Kiran Auchoybur, Robert J. Miller

University of Cambridge, Cambridge, UK

Paper No. GT2016-57396, pp. V02AT37A038; 13 pages
  • ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
  • Volume 2A: Turbomachinery
  • Seoul, South Korea, June 13–17, 2016
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-4969-9
  • Copyright © 2016 by ASME


Near the endwalls of multi-stage compressor blade rows, there is a spanwise region of low momentum, high entropy fluid which develops due to the presence of annulus walls, leakage flows and corner separations. Off-design this region, known as the endwall flow region, often grows rapidly and in practice sets the compressor’s operating range. By contrast, over the operating range of the compressor, the freestream region of the flow is not usually close to its diffusion limit and has little effect on overall range. In light of these two distinct flow regions within a bladerow, this paper considers how velocity triangles in the endwall region should be designed to give a more balanced spanwise failure across the blade span.

In the first part of the paper, the sensitivity of the operating flow range of a single blade row to variations in realistic multistage inlet conditions and endwall geometry is investigated. It is shown that the operating range of the blade row is largely controlled by the size and structure of the endwall ‘repeating stage’ inlet boundary layer and not the detailed local geometry within the blade row.

In the second part of the paper the traditional design process is ‘flipped’. Instead of redesigning a blade’s endwall geometry to cope with a particular inlet profile into the blade row, the endwall region is redesigned in the multi-stage environment to ‘tailor’ the inlet profile into downstream blade rows. This is shown to allow an extra degree of freedom not usually open to the designer. This extra degree of freedom is exploited to balance freestream and endwall operating range, resulting in a compressor having an increased operating range of ∼20%. If this increased operating range is traded with reduced blade count, it is shown that a design efficiency improvement of Δη∼0.5% can be unlocked.

Copyright © 2016 by ASME
Topics: Compressors , Design



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In